A permutation, also called an “arrangement number” or “order,” is a
rearrangement of the elements of an ordered list S into a one-to-one
correspondence with S itself. A string of length n has n! permutation.
Below are the permutations of string ABC.
ABC, ACB, BAC, BCA, CAB, CBA
Here is a solution using backtracking.

Output:
Below are the permutations of string ABC.
ABC, ACB, BAC, BCA, CAB, CBA
Here is a solution using backtracking.

// C program to print all permutations with duplicates allowed#include <stdio.h>#include <string.h>/* Function to swap values at two pointers */void swap(char *x, char *y){ char temp; temp = *x; *x = *y; *y = temp;}/* Function to print permutations of string This function takes three parameters: 1. String 2. Starting index of the string 3. Ending index of the string. */void permute(char *a, int l, int r){ int i; if (l == r) printf("%s\n", a); else { for (i = l; i <= r; i++) { swap((a+l), (a+i)); permute(a, l+1, r); swap((a+l), (a+i)); //backtrack } }}/* Driver program to test above functions */int main(){ char str[] = "ABC"; int n = strlen(str); permute(str, 0, n-1); return 0;} |
ABC ACB BAC BCA CBA CAB
Algorithm Paradigm: Backtracking
Time Complexity: O(n*n!)




